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Black Hole Radiation and S-matrix

J. G. Russo1
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The existence of an S-matrix below the threshold of black hole formation would
be enough to exhibit, through its analytic structure, eventual thresholds for the
creation of new objects and to describe, through analytic continuation, the physics
above them in a unitary framework. In the context of a two-dimensional exactly
soluble model, the semiclassical dynamics of quantum black holes is obtained
by analytically continuing the description of the regime where no black hole is
formed. The resulting spectrum of outgoing radiation departs from the one
predicted by the Hawking model by the time the outgoing modes arise from the
horizon with Planck-order frequencies. The theory predicts an unconventional
scenario for the evolution: black holes only radiate out an energy of Planck mass
order, stabilizing after a transitory period. A similar picture is obtained in 3 1
1 dimensions with spherical symmetry.

1. INTRODUCTION

We shall revisit a problem that has been discussed to some extent in the

recent years, namely whether the process of black hole formation and evapora-

tion [1] can be described by a unitary S-matrix [2±6; see ref. 3 for a review].
The present work is based on refs. 7 and 8.

Black hole physics provides a setting for the study of the interplay between

general relativity and quantum mechanics. In particular, it appears difficult to

reconcile the apparently thermal evaporation of a black hole formed in gravita-

tional collapse with the Hamiltonian evolution of pure quantum mechanical
states [9]. In the Hawking model [1], after a black hole has completely evapo-

rated, the outgoing matter is constituted by thermal radiation and all the quantum

mechanical information about the original collapsing matter is lost. It has been

argued that, due to backreaction effects, the Hawking model may break down

long before the evaporation is complete [2, 3, 6, 10±13]. Becauseof an exponen-

tial redshift, the outgoing modes arise from a reservoir of trans-Planckian ener-

1 Theoretical Physics Group, Imperial College, London SW7 2BZ, England.

1207

0020-7748/99/0400-120 7$16.00/0 q 1999 Plenum Publishing Corporation



1208 Russo

gies; if a Planck-scale cutoff is imposed before the horizon, it seems that there

would be only a scarce amount of outgoing modes, and black holes would lose

an insignificant mass by evaporation. Lacking the fundamental short-distance
theory, by the time the outgoing modes arise from the horizon with Planck

frequencies, some extra assumption is needed. Extrapolating the Hawking radi-

ation into this region leads to paradoxes, such as loss of quantum coherence. ’ t

Hooft has proposed to start from the postulate that an S-matrix exists, and then

find out what new kind of matter is required (ª the S-matrix ansatzº [3]). In

particular, the unitarity property of the S-matrix seems to require a huge reduc-
tion of matter degrees of freedom (proportional to the area, instead of the field-

theoretic dependence on volume) to the extent that one space-time dimension

would be superfluous [14]. However, unitarity is not the only implication of

having an S-matrix: an S-matrix also requires that the physics above the thresh-

olds is described by the same (analytically continued) formulas that govern the

physics below the thresholds. Surprisingly, we will find that the assumption of
analyticity suggests a black hole evolution quite different from the standard one.

Let the event horizon be located at a retarded (Kruskal) time U 5 2 p.

The energy that has been radiated up to a time U1 is given by (see Section 5)

Eout > 2
1

MG
log(U1 1 p) (1)

How close to the horizon does one need to extrapolate the Hawking model

to have evaporation? From Eq. (1) we see that Eout > M implies U1 1 p >
exp( 2 GM2). That is, the Hawking model needs to be extrapolated up to

exponentially small proper distances from the horizon , exp( 2 GM2). An

outgoing mode with frequency w ` , (MG) 2 1 thus has frequency w0 , (MG) 2 1

exp(GM2) at the moment it arises from the horizon (modulo power-like

corrections). For a macroscopic black hole with M2 À 1/G, this means w0
À

M! Corrections are first expected when w0 , 1/ ! G (this would be the location

of the ª stretched horizonº in ref. 11; the different horizons that are relevant

to the evaporation problem are discussed in ref. 15). By that time, almost

nothing has been radiated, Eout 5 O(1/MG) , mplanck. According to ref. 3,
quantum gravity effects are such that there is radiation with w0 . 1/ ! G, but

it is no longer thermal. It should contain all the original quantum mechanical

information encoded in subtle correlations, so that unitarity in the evolution

is preserved. This requires the notion of complementarity, as emphasized in

ref. 11; indeed, an inertial observer falling into a large black hole does not

see any strong quantum gravity effects in crossing the horizon (since curva-
tures are much smaller than G 2 1). It is clear that the description of physics

according to the out and infalling observers must be very different; in particu-

lar, the infalling observer sees no Hawking radiation at all. A description

based on an S-matrix approach can only be appropriate for the out observer.
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The investigation of the problem in the context of 3 1 1 Einstein gravity

faces two inconvenient issues. Einstein theory is not renormalizable and

including backreaction effects is very complicated. A simplified framework
is obtained by restricting the dynamics to spherically symmetric configura-

tions, i.e., metrics of the form

ds2 5 gij(x
0, x1) dx i dx j 1 r 2(x0, x1) d V D 2 2, i, j 5 0, 1 (2)

This leads to a two-dimensional theory containing a 2-tensor gij and a scalar

f , r 2(x) 5 e 2 2 f (x). The most general local action containing terms with no

more than two derivatives is given by

S 5 # d 2x ! 2 ge 2 2 f [R 1 F( f )( - f )2 1 V( f )] (3)

The action (3) includes as special cases the dimensional reduction of 3 1 1

Einstein±Hilbert action,

Seinstein 5 # d 2x ! 2 ge 2 2 f [R 1 2( - f )2 1 2e2 f ] (4)

and the low-energy effective action of string theory,

Sstring 5 # d 2x ! 2 ge 2 2 f [R 1 4( - f )2 1 4 l 2] (5)

The model (5) has black hole solutions, where the metric and dilaton are
given by ( l 5 1)

ds2 5
dx+ dx 2

M 2 x+x 2 5
1

1 2 Me 2 2 s ( 2 d t 2 1 d s 2)

5 2 (1 2 Me 2 2x) dt 2 1 (1 2 Me 2 2x) 2 1 dx 2, f 5 2 x (6)

In two-dimensional gravity the gravitational coupling e2 f asymptotically
decreases like 1/r 2. This accounts, in particular, for the 1/r 2 dilution effect

of the energy density of an in/outgoing spherical shell. Two-dimensional

dilaton gravity embodies all the features of the Hawking model of gravitational

collapse. Nevertheless, angular coordinates might play an important role in

the dynamics of the evaporation of (3 1 1)-dimensional black holes and they

are ignored in the reduction (see refs. 3 and 14).

2. EXACTLY SOLVABLE MODEL

By including conformal matter and the one-loop anomaly term R( ¹ 2) 2 1

R in the action (5), in ref. 16 a model for the semiclassical description of
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the backreaction of the Hawking radiation on the geometry was constructed.

The equations of motion of the resulting model [16] cannot be solved in a

closed form, but there is a similar model which is exactly solvable [17],

S 5
1

2 p # d 2x ! 2 g F e 2 2 f (R 1 4( ¹ f )2 1 4 l 2) 2
1

2 o
N

i 5 0

( ¹ fi)
2

2 k (2 f R 1 R( ¹ 2) 2 1R) G , k 5
N

48
(7)

By fixing the conformal gauge g 6 6 5 0, g 1 2 5 2 1±2 e2 r , and making a field

redefinition

x 5 4 k r 1 e 2 2 f 2 2 k f , V 5 e 2 2 f 1 2 k f (8)

we find that the action (7) takes the simple form

S # d 2x F 1

4 k
( - + V - 2 V 2 - + x - 2 x ) 1 l 2e(1/2 k )( x 2 V ) 1

1

2 o
N

i 5 0
- + fi - 2 fi G (9)

In addition, we have the constraints originating from the g 6 6 equations

of motion:

t 6 (x 6 ) 5
1

4 k
( 2 - 6 x - 6 x 1 - 6 V - 6 V ) 1 - 2

6 x 1
1

2 o
N

i 5 0
- 6 fi - 6 fi (10)

The functions t 6 (x 6 ) are determined by boundary conditions.

In the ª Kruskalº gauge x 5 V , it is easy to find the general solution

to the equations of motion of (9) with the constraints (10) (representing a

general distribution of collapsing matter). It is given by

V 5 x 5 2 l 2x+(x 2 1 l 2 2P+(x
+)) 2 k log( 2 l 2x+x 2 ) 1 l 2 1M(x+)

P+(x
+) 5 #

x 1

0

dx+ T 1 1 (x+)

(11)

M(x+) 5 l #
x 1

0

dx+ x+T 1 1 (x+)

T 1 1 (x+) 5
1

2 o
N

i 5 0

- + fi - + fi

The vacuum solution is obtained by setting T 1 1 5 0,

e 2 2 f 5 e 2 2 r 5 2 l 2x+x 2 (12)
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or, introducing Minkowskian coordinates s 6 by l x 6 5 6 e 6 l s 6
, one gets

r 5 0, f 5 2 l s , and s 6 5 t 6 s . The scalar curvature of the general

geometry can be written as [see Eq. (8)]

R 5 8e 2 2 r - + - 2 r 5 8e 2 2 r 1

V 8( f )
( - + - 2 x 2 4 - + f - 2 f e 2 2 f ) (13)

In this form we see that, generically, there will be a curvature singularity at

f 5 f cr 5 2 1±2 log k , where V 8( f ) 5 0. Inspection of Eq. (11) shows that

there are two possible regimes:

subcritical regime: T 1 1 (x+) , T cr
1 1 (x+),

T cr
1 1 (x+) 5

k
x 1 2

supercritical regime: T 1 1 (x+) . T cr
1 1 (x+)

In the subcritical regime the line f 5 f cr is timelike. In the supercritical

regime it becomes spacelike, and the causal structure of the geometry is given

by the usual Carter±Penrose diagram of the Hawking model of gravitational

collapse [17].

Let us assume that originally the geometry is the linear dilaton vacuum;
at some time x 1

0 , an incoming energy flux T 1 1 (x+) , T cr
1 1 (x+) is turned on

and at some later time x 1
1 it is turned off. There are three different regions,

as indicated in Fig. 1. In region (i), the solution is given by Eq. (11),

Fig. 1. Kruskal diagram in the subcritical regime.
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which is completely specified by the asymptotic boundary conditions and by

demanding a continuous matching with the linear dilaton vacuum in the

infalling line x+ 5 x 1
0 . In region (ii) the boundary f 5 f cr is timelike and

boundary conditions are needed in order to determine the evolution. Continu-

ity along the line x 2 5 x 2
0 requires that the solution in region (ii) be of the form

V (ii)(x+, x 2 ) 5 V (i)(x+, x 2 ) 1 F(x 2 )

with F(x 2
0 ) 5 0. The ª reflectingº boundary conditions of ref. 17 follow from

the requirement that the curvature is finite at the boundary line. Using Eqs.
(8) and (13), one finds the conditions

- + V | f 5 f cr 5 - 2 V | f 5 f cr 5 0 (14)

As a result, the function F(x 2 ) is determined to be

F(x 2 ) 5 k ln F x 2

x 2 1 l 2 2P+(xÃ
+) G 2 l 2 1 M(xÃ+) (15)

where xÃ+ 5 xÃ+ (x 2 ) describes the boundary curve:

2 l 2x+(x 2 1 l 2 2P+(xÃ
+)) 5 k (16)

Finally, in region (iii) the geometry is matched with the vacuum:

V (iii) 5 x (iii)

5 2 l 2x+(x 2 1 p) 2 k ln[ 2 l 2x+(x 2 1 p)],

p [ l 2 2P+(x
1
1 )

In Minkowski coordinates, the geometry in (iii) is simply given by

ds2 5 2 d s + d s 2 , f 5 2 l s , l (x 2 1 p) 5 2 e l s 2
, l x+ 5 e l s 1

Let us now determine the outgoing energy density fluxes. Using the

constraints (10), we find

T(i)
2 2 (x 2 ) 5 k F 1

(x 2 1 p)2 2
1

x 2 2 G (17)

T(ii)
2 2 (x 2 ) 5 k

1

(x 2 1 p)2 2
l 4

k /(xÃ+)2 2 T 1 1 (xÃ+)
(18)

T (iii)(x 2 ) 5 0 (19)

3. BLACK HOLES BY ANALYTIC CONTINUATION

As discussed in Section 1, by the time backreaction effects of the

Hawking radiation are expected to be important, some additional input is
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needed in order to determine the subsequent evolution of the geometry. The

assumption here is based on analytically continuing the formulas for the

subcritical regime obtained in the preceding section [7].

3.1. Outgoing Energy-Density Flux

In the subcritical theory, from Eqs. (17) and (18) one obtains the follow-

ing expressions for the total energies radiated in regions (i) and (ii):

E(i)
out 5 2 l #

x 2
0

2 `

dx 2 (x 2 1 p)T(i)
2 2 5 2

k l p

x 2
0

2 k l ln 1 1 1
p

x 2
0 2 (20)

E(ii)
out 5 2 l #

x 2
1

x
2
0

dx 2 (x 2 1 p)T(ii)
2 2 5 m 1

k l p

x 2
0

1 k l ln 1 1 1
p

x 2
0 2 (21)

Consider the intermediate regime (Fig. 2), where there is black hole formation

and yet p , | x 2
0 | , so that we can continue the above expressions in a straight-

forward way (this intermediate regime physically corresponds to the formation

of Planck-size black holes). Let us split the integral (20) as E(i)
out 5 E (a)

out 1
E(1b)

out , where

Fig. 2. Intermediate regime. The thick line represents the apparent horizon given by Eq. (16)
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E(a)
out 5 2 l #

x 2
1

2 `

dx 2 (x 2 1 p)T(i)
2 2 5 2

k l p

x 2
1

2 k l ln 1 1 1
p

x 2
1 2 (22)

E(1b)
out 5 2 l #

x 2
0

x
2
1

dx 2 (x 2 1 p)T(i)
2 2 5 2

k l p

x 2
0

1
k l p

x 2
1

2 k l ln
(1 1 p/x 2

0 )

(1 1 p/x 2
1 )

(23)

The first integral gives the energy radiated in region (a) of Fig. 2. The second

integral contributes to the radiation in region (b).

The total energy radiated in region (b) is obtained by adding E(ii)
out. Since

now x 2
1 , x 2

0 , it is convenient to write this integral in the following way:

E(ii)
out 5 2 l #

x 2
0

x
2
1

dx 2 (x 2 1 p) ( 2 T(ii)
2 2 ) 5 E(2b)

out

5 m 1
l k p

x 2
0

1 k l ln 1 1 1
p

x 2
0 2 (24)

Thus

E(b)
out 5 E(1b)

out 1 E(2b)
out 5 2 l #

x 2
0

x
2
1

dx 2 (x 2 1 p) TÄ (b)
2 2 (25)

with

TÄ (b)
2 2 [ T(i)

2 2 2 T(ii)
2 2 (26)

Hence

E(b)
out 5 m 1

l k p

x 2
1

1 k l ln 1 1 1
p

x 2
1 2 (27)

Clearly, E(a)
out 1 E(b)

out 5 m, so that the whole incoming energy has been radiated.
This means that these ª smallº black holes evaporate completely.

It should be noticed that in region (b) (i.e., in the region in causal contact

with the apparent horizon) the T 2 2 arising in the model of ref. 17 (which is

a 1 1 1-dimensional counterpart of the Hawking model) does not coincide

with the continuation of the subcritical formulas given by Eq. (25). Indeed,

in ref. 17 the T 2 2 keeps being T(i)
2 2 until the geometry is matched with the

vacuum. Although in both cases the original energy is completely radiated,

the structure of the outgoing energy-density fluxes of the two models is

different already for this intermediate regime, where the continuation is

straightforward.
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3.2. Apparent Horizon as a Boundary

In the subcritical regime the boundary conditions (14) or, equivalently,

V 5 V cr, - + V 5 0

can be implemented simultaneously on some line. Above the threshold, the

curve defined by V 5 V cr splits from the curve defined by - + V 5 0 (which

is the apparent horizon). Thus there seem to be two possible supercritical

theories, according to where the boundary is placed:

(A) V 5 V cr. This choice leads to the model of ref. 17, which, as pointed
out above, is not the analytic continuation of the subcritical theory.

(B) - + V 5 0. We will now show that this choice reproduces the results

that were previously obtained by a simple continuation of the subcritical

formulas. This would thus be the natural choice for an S-matrix description.

So let the boundary be at the apparent horizon - + V 5 0. As before, we
consider the situation where the incoming supercritical energy-density flux

T 1 1 (x+) is turned on at x 1
0 , and it is turned off at a later time x 1

1 . The boundary

- + V 5 0 becomes timelike for x+ . x 1
1 , and boundary conditions are needed

in order to determine the evolution of the geometry in region (b) (see Figs.

2 and 3). Continuity along the line x 2 5 x 2
1 requires that

V (b)(x+, x 2 ) 5 V (a)(x+, x 2 ) 1 F(x 2 ), F(x 2
0 ) 5 0 (28)

Fig. 3. Apparent horizon in the supercritical regime.
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We need to generalize the expression (15) for the case when there is some

energy stored in the geometry by the time the boundary becomes timelike,

that is,

F(x 2 ) 5 k ln 1 x 2 1 l 2 2P+(u)

x 2 1 p 2 1 l 2 1M(u) 2 l 2 1M(x 1
1 ) (29)

with u(x 2 ) given by the branch x 1
0 , u , x 1

1 of the solution to the equation

2 l 2u(x 2 1 l 2 2 P+(u)) 5 k

The matching between regions (a) and (b) is smoother as compared to the

model of ref. 17; there is no outgoing shockwave (namely no ª thun-

derpopº [17]):

T 2 2 (x 2
1 1 e ) 2 T 2 2 (x 2

1 2 e ) 5 2
dF

dx 2 d (x 2 x 2
1 ) 5 0

since dF/dx 2 vanishes at x 2 5 x 2
1 .

Let us now determine the outgoing energy-density fluxes. Consider first

the case of ª smallº black holes, i.e., the intermediate regime with p , | x 2
0 |

(Fig. 2). In region (c) the geometry is the linear dilaton vacuum,

V (c)(x+, x 2 ) 5 2 l 2x+(x 2 1 p) 1 k ln( 2 l 2x+(x 2 1 p)) (30)

Using Eq. (10), we find the following expressions for the energy-momentum

tensor in the different regions:

T (a)
2 2 (x 2 ) 5 k F 1

(x 2 1 p)2 2
1

x 2 2 G (31)

T (b)
2 2 (x 2 ) 5 l 2 du

dx 2 2
k

x 2 2 (32)

T (c)
2 2 (x 2 ) 5 0 (33)

Note that, since u8 5 l 2( k /u2 2 T 1 1 (u)) 2 1 , 0 (the flux is above the critical

flux), the outgoing flux in region (b) carries negative energy. It can be shown
that the time interval during which negative energy emission takes place is

less than O( l 2 1), i.e., a ª Planckianº interval of time, with Planck-order energy

O( 2 l k ) (the total energy emitted by the black hole is always positive [7]).

In region (a) the solution was not modified, so one has T (a)
2 2 5 T (i)

2 2 . In

region (b) we have

T (b)
2 2 5 T (i)

2 2 2 T (ii)
2 2 [ TÄ (b)

2 2 (34)

in exact agreement with the formulas obtained by analytically continuing the

expressions corresponding to the subcritical regime.
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Let us now proceed by considering the case p . | x0 | (which includes

macroscopic black holes with p À | x0 | ). The final t ® ` geometry is obtained

by taking the limit x+ ® ` and x 2 ® 2 p at fixed x+ (x 2 1 p) in Eqs. (28),
(29). We obtain

V (b)(x+, x 2 ) 5 2 l 2x+(x 2 1 p) 1 k ln( 2 l 2x+(x 2 1 p)) 1
mf

l
(35)

m f 5 M(x 1
2 ) 1 l k ln 1 1 2

P+(x
1
2 )

l 2p 2 , x 1
2 [ u( 2 p) (36)

This is a static geometry with ADM mass equal to m f . In the whole available

space-time, where 2 l 2x+(x 2 1 p) . k , the logarithmic term in Eq. (35) can
be neglected and the geometry is essentially the same as the classical black

hole geometry. The logarithmic term is only significant close to the line x 2

5 2 p, where there is a singularity. However, this lies beyond the boundary

at the apparent horizon.

Let us check that energy is conserved. By explicit integration of Eqs.
(31) and (32) we now obtain

E(a)
out 5 2 l #

x 2
1

`

dx 2 (x 2 1 p)T (a)
2 2 5 2

k p

x 2
1

2 k l ln 1 1 1
p

x 2
1 2

E(b)
out 5 2 l #

2 p

x
2
1

dx 2 (x 2 1 p)T (b)
2 2 5 m 2 M(x 1

2 ) 1
k p

x 2
1

1 l k ln
1 1 p/x 2

1

1 2 P+(x
1
2 )/ l 2p

so that

E (a)
out 1 E (b)

out 5 m 2 M(x 1
2 ) 2 l k ln 1 1 2

P+ (x 1
2 )

l 2p 2 5 m 2 mf

Thus energy is indeed conserved.

It is clear that for large black holes the total radiated energy is very
small. Indeed, the energy that comes out is approximately equal to the energy

that came in between times x 1
2 , x+ , x 1

1 . But this is a Planckian interval

of time, since these points coincide in the classical limit. As an example, we

have evaluated mf for a constant incoming flux T 1 1 5 %/x 1 2
. We find

mf 5 (1 2 k /%)m, if x 1
1 /x 1

0
À 1

mf 5 m 2 k l log m/ l , if x 1
1 /x 1

0 > 1

so that m 2 mf , , m, since % . . k for p . . | x 2
0 | .
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To summarize, energy is conserved in both intermediate and supercritical

regimes. For small black holes the final state is the vacuum (i.e., they evaporate

completely). For macroscopic black holes ( p . . | x 2
0 | ) the final state is a

static black hole of approximately the same mass as the original configuration.

The total emitted energy is a small Planck-order quantity.

4. S-MATRIX

In this section we will attempt the construction of an S-matrix based on
the map between ingoing and outgoing modes defined by the reflection

condition of the subcritical theory. We start by expanding the matter fields

f( s +, s 2 ) 5 f+( s +) 1 f 2 ( s 2 ) in terms of Fourier modes2

- + f+( s +) 5 #
`

2 `

d v
2 p

a ( v ) ei v s 1
(in) (37)

- 2 f 2 ( s 2 ) 5 #
`

2 `

d v
2 p

b ( v ) ei v s 2
(out) (38)

The canonical commutation relations for f give

[ a i ( v 1), a j ( v 2)] 5 v 1 d ij d ( v 1 1 v 2) (39)

[ b i ( v 1), b j ( v 2)] 5 v 1 d ij d ( v 1 1 v 2) (40)

It is convenient to work in Kruskal coordinates. The Fourier expansions take

the form

- + f+(x
+) 5 #

`

2 `

d v
2 p

a ( v ) (x+)i v 2 1 (in) (41)

- 2 f 2 (x 2 ) 5 #
`

2 `

d v
2 p

b ( v ) ( 2 x 2 2 p) 2 i v 2 1 (out) (42)

The reflecting boundary condition dx+ - + f+(x
+) 5 dx 2 - 2 f 2 (x 2 (x+)), where

x 2 (x+) is given by Eq. (16), formally relates ingoing and outgoing modes.

Now the coordinate x 2 is itself an operator since it depends on the operator

P+(x
+) through Eq. (16). Using Eqs. (41), (42), and (16), we obtain

b ( v ) 5 #
`

0

dx+

x+ #
`

2 `

d v 8

2 p
a ( v 8)( k 2 x+PÅ +(x

+))i v (x+)i( v 8 2 v ) (43)

2 In what follows we set l 5 1. For the sake of clarity, the indices i, j, k 5 1, . . . , N will be
omitted from some formulas.
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where

PÅ +(x+) 5 #
`

x
1

dx+ 1

2 o
N

i 5 0

: - + fi - + fi :, P+(x
+) 1 PÅ

+(x
+) 5 p

PÅ +(x+) 5 2
1

4 p 2 #
`

2 `

d v 8 d v 9 x 1 i( v 8 1 v 9) 2 1

i( v 8 1 v 9) 2 1
: a i ( v 8) a i ( v 9):

Normal ordering is defined as usual by placing annihilation operators to the

right. The ª inº vacuum Fock state is annihilated by the a i( v ) 5 0, v . 0.
Equations (39) and (40) indicate that the transformation (43) must

be a canonical transformation and thus the S-matrix should be unitary.

However, to define fully the operator b ( v ) in Eq. (43) [and give a precise

mathematical meaning to (43)], it is necessary to expand the binomial.

For the low-energy sector we expect x+PÅ + to have small eigenvalues, and

hence we may define this operator b ( v ) by expanding in powers of x+PÅ +.
As shown in the similar construction in ref. 5, this procedure does not

provide a complete description of the out space. The construction gives

a nonunitary S-matrix representing a small probability of flux coming out

of the black hole. This seems consistent with the fact that the analytic

continuation of the outgoing energy-momentum tensor of the subcritical

regime leads to stable final black hole configurations.
Expanding in powers of (1/ k )x+PÅ +, we see that b ( v ) in Eq. (43) is of

the form

b ( v ) 5 k i v ( a 1 k 2 1 a a a 1 . . . 1 k 2 n a 2n 1 1 1 . . .)

b ( v ) 5 b (1)( v ) 1 b (3)( v ) 1 . . . 1 b (2n 1 1)( v ) 1 . . .

where the b (2n 1 1) ( v ) can be explicitly obtained from Eq. (43) by expanding

the binomial. We obtain for the first two terms

b (1)
j ( v ) 5 k i v a j ( v )

b (3)
j ( v ) 5

i v k i v

4 p 2 k # d v 8d v 9

i( v 8 1 v 9) 2 1
a j ( v 2 v 8 2 v 9) : a k( v 8) a k( v 9):

Consider, for example, a one-particle ª inº state:

| 1 & 5
1

! 2 v 2

a j ( v 2) | 0 & , v 2 , 0

For 1±1 and 1±3 processes we obtain the tree-level amplitudes

1 ® 1: K b i ( v 1)

! v 1

a j ( v 2)

! 2 v 2 L 5 k i v 1 d ij d ( v 1 1 v 2)



1220 Russo

1 ® 3: ^ b i ( v ) a j ( v 1) a k( v 2) a l( v 3) &

5
i

2 p 2 v v 1 v 2 v 3 k i v 2 1 F d ij d kl

i( v 1 v 1) 2 1
1 perm. G

3 d ( v 1 v 1 1 v 2 1 v 3)

5. BLACK HOLE EVOLUTION IN 3 1 1 DIMENSIONS

Let us consider spherically symmetric configurations of collapsing mat-
ter in four-dimensional Einstein gravity coupled to massless matter. We shall

first determine the evolution of the apparent horizon, showing, in particular,

that there is a low-energy regime in which it is timelike. In this regime, we

will examine the implementation of reflecting-type boundary conditions on

the apparent horizon (this is motivated by the 1 1 1-dimensional model of

Section 3, where such boundary conditions correspond to an analytic transition
between subcritical and supercritical regimes). Finally, we will extrapolate

the resulting expressions for the outgoing fluxes to the regime where the

apparent horizon is spacelike.

We start with metrics of the form (2) and fix the conformal gauge: gij(x
0,

x1) dx i dx j 5 e2 r (U,V) dU dV. To fix the notation, let us consider the static

Schwarzschild geometry. The standard connection with Kruskal coordinates
U,V is given by

2mG(r 2 2mG)er/2mG 5 2 V(U 1 p), p 5 2mG

U 1 p 5 2 2mGe 2 u/4mG, V 5 2mGev/4mG

where v, u 5 t 6 r* and r* 5 r 1 2mG log(r 2 2mG). In this case the

apparent horizon coincides with the event horizon U 5 2 p. For more general,

time-dependent configurations, the apparent horizon is determined from

the equation

- r(U, V )

- V
5 0 (44)

Using (44) and the Einstein equation for gVV , we obtain

- 2
V r 2 2 - V r - Vr 5 2 4 p GrTVV

one obtains (see ref. 8 for further details)

dV

dU F 2
kGm2

V2M2(V )
1

TVV

7(V ) G 5 2 1, k 5
Ne

480 p
(45)
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where

2eG2 dM 2(V )

dV
5 V

dP(V )

dV
,

dP(V )

dV
5

TVV

7(V )
,

7(V ) [ [16 p eG3 M 2(V )] 2 1

The parameter m 5 M(V1) represents the total ADM mass of the collapsing
body, whereas p 5 P(V1) is the total infalling Kruskal momentum (we assume

that the incident flux starts at V 5 V0 and stops at V 5 V1). From Eq. (45)

we see that there is a critical value of the incident energy-density flux for

which dV/dU changes sign:

T cr
vv | AH 5 N

p 2

30
T 4

H 5
N

122880 p 2G4M 4(V )
(46)

For lower TVV the apparent horizon is timelike; for greater TVV , it is spacelike.

Note that a spacelike apparent horizon necessarily involves a black hole

geometry, since it implies that the curve r(U, V ) 5 0 is spacelike. For V
near V1, one has M(V ) > m, and Eq. (46) reduces to

V[U 1 P(V )] > 2 kG (47)

Next, we determine the boundary conditions on a timelike apparent

horizon. In the classical theory, a reflection on a boundary V(U ) is given by

the condition

TUU 5 TVV 1 dV

dU 2
2

In the quantum theory, we need to relate TUU 5 in ^ 0 | TÃUU | 0 & in and TVV 5
in ^ a | TÃVV | a & in, where out ^ 0 | TÃUU | 0 & out 5 0 and in ^ 0 | TÃVV | 0 & in 5 0, and | a & in is the

quantum state representing collapsing matter. Any two composite operators

TÃUU and TÃ8UU differing only in normal-ordering substraction will be related

by TÃ8UU 5 TÃUU 2 tÃUU, where for free fields tÃUU will be a c-number. Thus we
expect for the quantum theory a relation of the form

T R
UU 5 tUU 1 1 dV

dU 2
2

(TVV 2 tVV) (48)

In the regions where TVV 5 0 the outgoing flux will be purely due to radiation,
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T H
UU 5 tUU 2 1 dV

dU 2
2

tVV (49)

The calculation here will not depend on the explicit form of tUU, tVV . The

radiated energies in the subcritical regime can be calculated by integrating

(48) and (49) (cf. Fig. 1, with x 2 , x+ ® U, V )

E(i)
out 5 4 p #

u0

2 `

du r 2 Tuu 5 2
p

mG #
U0

2 `

dU (U 1 p)r2 T H
UU (50)

E(ii)
out 5 2

p
mG #

U1

U0

dU (U 1 p)r2 T R
UU

Suppose that between (V0, V1) Tvv is increased above T cr
vv. The apparent horizon

for those V will be spacelike and, as a result, part of region (i) will overlap

with region (ii) (cf. Fig. 2). We continue the subcritical expressions just as

in the (1 1 1)-dimensional model of Section 3. The energy in region (a) is

obtained by integrating the usual Hawking flux T H
UU, whereas the energy

radiated between U1 and U0 is given by

E(b)
out 5 2

p
mG #

U0

U1

dU (U 1 p)r2 T (b)
UU (51)

where

T (b)
UU 5 T H

UU 2 T R
UU 5 2 TVV 1 dV

dU 2
2

(52)

We note that the outgoing energy-density flux between U1 and U0 is negative.

It will soon be clear that the amount of negative energy radiated in region

(b) is a tiny Planck-scale quantity (e.g., for a solar-mass black hole, E(b)
out 5

2 10 2 114mpl). In quantum theory energy-density is not positive definite; in

the present case it is the tail of the outgoing wave that carries off this bit of

negative energy.

Let us now restrict our attention to macroscopic black holes (m . .
mpl). The total energy radiated in region (a) can be calculated by integrating

the Hawking radiation flux near the horizon,

T H
uu , 1

(Gmr)2 or T H
UU , 1

r2(U 1 p)2
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We find

E(a)
out >

1

mG
, E(b)

out > 2
1

m3G2

so that

E total
out 5 E(a)

out 1 E(b)
out > (mG) 2 1 5 1 mpl

m 2 mpl

As in the (1 1 1)-dimensional model, the total radiated energy is a small
Planck-scale quantity. The black hole retains most of its original mass.

6. CONCLUSIONS

Here we have explored the theory that results from analytically continuing
the subcritical regime above the threshold of black hole formation. In the corres-

ponding semiclassical theory, quantum effects appear in various ways, but the

net result is that only small alterations over a classical picture appear. This may

be interpreted as an indication of an ultraviolet softening in quantum gravity,

since the quanta that are suppressed are those which have trans-Planckian fre-
quencies at the moment they arise from the horizon. The apparent horizon acts

as a natural ultraviolet cutoff. A boundary at the apparent horizon amounts to

excluding the region of space-time where the contours r 5 const. are spacelike.

(It should be stressed that no ª wallº prevents an infalling macroscopic object

from entering into the black hole. As a macroscopic object is falling in, the

apparent horizon expands and the object always remains inside the black hole.
It is only the small emitted radiation that is effectively described as if there was

a boundary at the apparent horizon.)

The stability of the final geometry can be understood in different ways.

It is known that in order to have zero fluxes at infinity [in the present case,

in region (b)], the gravitational field must be greatly modified near the line

U 5 2 pÐ the Boulware vacuum choice, defined in terms of the Schwarz-
schild Killing vector [18]. As seen in Section 3, this is exactly what is

happening: in the allowed space-time region, the final geometry (35) is

essentially the same as the classical black hole geometry; only at distances

exponentially close to the event horizon is the geometry significantly modi-

fied, but this lies beyond the boundary. Here the geometry has settled down

to this situation dynamically having started from the Unruh vacuum.
As far as the information problem is concerned, one may distinguish

three plausible scenarios: (1) the Hawking model, where pure states evolve

into mixed states, and there is no unitary evolution; (2) stabilized black holes,

where Hawking particles corresponding to transplanckian frequencies are
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suppressed by quantum gravity effects; (3) the ’ t Hooft picture, where black

holes evaporate completely, and quantum gravity effects on transplanckian

modes are such that the unitarity of the evolution is preserved.
The present results may be regarded as an implementation of the

second scenario, which thus seems to be supported by the analytic propert ies

of an S-matrix. There is no loss of quantum coherence, since all quantum

mechanical information remains inside the final stable black hole geometry.

The effective equivalence between analytic continuation and a theory with

a boundary at the apparent horizon may be interpreted as another manifesta-
tion of the membrane paradigm [19].

It would be interesting to investigate possible implications for the D-

brane description of near-extremal black holes [20]. An extension of the

present calculation for charged black holes seems necessary before a compari-

son with amplitudes obtained by using D-brane methods can be made.
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